УДК 519.6; 159.9.01(075)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОРГАНИЗАЦИИ ЛИЧНОСТНО-ОРИЕНТИРОВАННОГО ОБУЧЕНИЯ УЧАЩИХСЯ НА ГИПЕРГРАФАХ

Омельченко Г.Г., Салпагаров С.И.

В настоящей статье представлена многокритериальная математическая модель организации личностно-ориентированного обучения учащихся. Построена экстремальная модель на языке теории гиперграфов.

Цели и задачи современного образования, положенные в основу концепции личностноориентированного обучения школьников, направлены на разрешение противоречий между базой знаний, умений и навыков, которые закладывает традиционная школа, и постоянно меняющимися требованиями, предъявляемыми к современными обшественноличности экономическими отношениями. Возникающие противоречия между уникальностью каждой личности и авторитарной методикой обучения с её набором педагогических штампов усиливают направленность школьного образования на его гуманизацию, на формирование личности ученика как наивысшей ценности. Изменения в целевых установках общеобразовательной школы, ориентация на создание оптимальных условий для развития творческого потенциала ребёнка с учётом его индивидуальных особенностей определили тему данной работы.

На пути реализации личностноориентированного обучения администрацией школы и педагогическим коллективом решается множество задач. Одной из них является задача оптимального назначения учителейпредметников в классы. Решение этой задачи особенно важно при переходе параллели классов из начальной в общеобразовательную школу.

В конце учебного года учителем и школьным психологом с помощью анкетирования, тестов и итоговых оценок проводится диагностика обучаемости, обученности, а также способности учащихся самостоятельно учиться, которая выражается показателем эффективности самостоятельной умственной деятельности. Полученные при этом результаты каждой диагностики классов заносятся в таблицу, что позволит учителю в дальнейшем наиболее целесообразно спланировать свою работу с классом по формированию необходимых знаний, умений и навыков по предмету, включая самоконтроль и самоуправление развитием. Более того, совокупность всех результатов диагностики позволяет ставить вопрос о наиболее целесообразном распределении учителей по классам рассматриваемой параллели с учетом их профессионального мастерства.

Исходными данными для построения математической модели организации личностноориентированного обучения в школе являются:

 $U = \{u\}$ – множество учителей, назначаемых в классы данной параллели.

 $T = \{t\}$ – множество современных педагогических технологий обучения [1]. Например, технология модульного обучения, интегральная технология, технология обучения с применением глобальных информационных сетей, технология уровневой дифференциации и методики диагностического целеполагания.

 $K = \{k\}$ — множество классов данной параллели. Классы на основании результатов проведённых тестов отнесены к одному из уровней $q \in Q$ сформированности учебноорганизационных умений. Множество этих уровней $Q = \{q\}$ определяется следующим образом: q = 0 — у учащихся отсутствует мотивация учебной деятельности; q = 1 — учащиеся работают на репродуктивном уровне; q = 2 — учащиеся работают на конструктивном уровне; q = 3 — учащиеся работают на творческом уровне.

Сформулируем следующую задачу. В каждый класс $k \in K$ требуется назначить одного из учителей $u \in U$, рекомендуя ему использовать в процессе обучения одну из технологий $t \in T$ с учетом психолого-педагогических характеристик этого класса. Результатом такого назначения должно стать повышение уровня мотивации учебной деятельности, эффективности обучения в школе, повышение уровня обученности и самостоятельной умственной деятельности учащихся.

В математической постановке задачи используются следующие понятия и обозначения теории гиперграфов [2]: G = (V, E) – гиперграф с множеством вершин $V = \{v\}$ и множеством рёбер $E = \{e\}$; рёбра $e \in E$ представляют собой подмножества множества V , т.е. $e \subseteq V$. Если каждое ребро $e \in E$ гиперграфа

G состоит из \mathbf{l} вершин, то гиперграф G называют \mathbf{l} -однородным. При $\mathbf{l}=3$ этот гиперграф G является 3-однородным; 3-однородный гиперграф G называется 3-дольным, если множество вершин V разбито на три подмножества V_s , $s=\overline{1,3}$ так, что в каждом ребре $e=(v_1,v_2,v_3)\in E$ его вершины принадлежат различным долям, т.е. $v_s\in V_s$, $s=\overline{1,3}$. В этом случае гиперграф G будем обозначать через $G=(V_1,V_2,V_3,E)$.

В гиперграфе $G = (V_1, V_2, V_3, E)$ звездой называется такая его часть $z = (V_1^Z, V_2^Z, V_3^Z, E_Z), \ V_S^Z \subseteq V_S, s = \overline{1,3}$, в которой любые ребра $e', e'' \in E_Z$ пересекаются в одной и той же вершине $v \in V_1^Z$, называемой центром звезды, т.е. мощность $\left|V_1^Z\right| = 1$, и не пересекаются ни в какой вершине $v \in V_3^Z$. Звезда называется простой, если всякая пара ребер $e', e'' \in E_Z$ пересекается только в одной вершине $v \in V_1^Z$. Степенью звезды называют число рёбер в ней.

В рассматриваемой задаче для данного гиперграфа $G = (V_1, V_2, V_3, E)$ выполняются следующие условия:

- 1) в каждом ребре $e = (v_1, v_2, v_3) \in E$ выделена пара вершин v_1, v_3 , называемых концевыми для этого ребра;
- 2) вершины $v \in V_2$ являются внутренними вершинами, и множество V_2 состоит из непустых попарно непересекающихся множеств $V_2(v_3), \ v_3 \in V_3$, причем каждый элемент $v \in V_2(v_3)$ однозначно соответствует некоторой технологии $t \in T$;
- 3) концевые вершины $v_3 \in V_3^Z$ являются висячими вершинами;
- 4) для каждой вершины v из V_1 указано число m(v) такое, что принадлежащая допустимому покрытию звезда с центром в вершине v имеет степень m(v) и при этом выполняется равенство $|V_3| = \sum_{v \in V} m(v)$.

Если в подгиперграфе G' = (V', E') гиперграфа G = (V, E) каждая компонента связности [2] является звездой с центром в некоторой вершине $v \in V_1$, то G' называем покрытием гиперграфа звездами.

Математическая модель рассматриваемой в настоящей работе задачи базируется на 3-3-однородном гиперграфе $G = (V, E) = (V_1, V_2, V_3, E)$, который строится следующим образом. Вершины первой доли, т.е. $v \in V_1$, взаимно однозначно соответствуют элементам множества учителей U . Каждой вершине $v \in V_1$, соответствующей учителю $u \in U$, приписано число m(v), определяемое нагрузкой учителя, а именно количеством классов рассматриваемой параллели, в которых данный учитель будет работать. Каждая вершина второй доли $v \in V_2$ однозначно соответствует некоторому элементу из множества технологий обучения T . Вершины третьей доли $v \in V_3$ взаимно однозначно соответствуют элементам множества классов K. Для построения множества рёбер $E = \{e\}$ рассматриваем всевозможные тройки вершин (v_1, v_2, v_3) такие, что $v_1 \in V_1$, $v_2 \in V_2, \ v_3 \in V_3$. Всякую такую тройку называем допустимой, если учитель v_1 может вести занятия в классе V_3 , используя технологию обучения v_2 . Множество всех рёбер $E = \{e\}$ определяется как множество всех допустимых троек $e = (v_1, v_2, v_3), v_i \in V_i, i = 1,3.$

Для определенных параметров m(v), $v \in V_1$ в гиперграфе $G = (V, E) = (V_1, V_2, V_3, E)$ допустимым решением рассматриваемой задачи является всякий такой его подгиперграф $x = (V_x, E_x)$, $V_x \subseteq V$, $E_x \subseteq E$, в котором каждая компонента связности представляет собой простую звезду степени m(v) с центром $v \in V_1$. Через $X = X(G) = \{x\}$ обозначим множество всех допустимых решений (МДР) задачи покрытия гиперграфа G звездами.

Каждому ребру $e \in E$ гиперграфа G = (V, E) приписаны три веса $w_n(e), n = \overline{1,3}$, которые означают следующее:

 $w_1(e) = f_1(v_1, v_2, v_3)$ – ожидаемое изменение познавательной деятельности учащихся класса (в %) в случае, когда учитель, представленный вершиной v_1 , назначен в класс, представленный вершиной V_3 с использованием технологии обупредставленной чения. вершиной $w_2(e) = f_2(v_1, v_2, v_3)$ – ожидаемое изменение (в том же случае) коэффициента обученноучащихся сти класса $w_3(e) = f_3(v_1, v_2, v_3)$ – ожидаемое изменение показателя эффективности активной самостоятельной умственной деятельности учащихся (в %) в этом же случае.

Качество допустимых решений этой задачи $x \in X$ оценивается с помощью векторной целевой функции (ВЦФ)

$$F(x) = (F_1(x), F_2(x), F_3(x)),$$
 (1) где $F_1(x)$ – критерий вида $MAXMIN$, $F_1(x) = \min w_1(e) \longrightarrow \max$, что означает ожидаемый уровень мотивации учебнопознавательной деятельности учащихся класса параллели, находящихся на самом низком уровне сформированности учебно-организационных умений; $F_2(x)$ и $F_3(x)$ – критерии вида $MAXSUM$ $F_v(x) = \sum_{e \in E} w_v(e) \longrightarrow \max$, $v = 2,3$,

где критерий $F_2(x)$ означает суммарное изменение ожидаемого уровня обученности

учащихся всей параллели классов по предмету, а критерий $F_3(x)$ – суммарное изменение ожидаемого уровня активной самостоятельной умственной деятельности учащихся всех классов параллели.

ВЦФ вида (1) определяет в МДР X паретовское множество (ПМ) \widetilde{X} , состоящее из паретовских оптимумов (ПО) \widetilde{x} [3]. В случае, если одинаковые по значению ВЦФ решения $x', x'' \in X$ считаются эквивалентными (неразличимыми), то из ПМ \widetilde{X} выделяется полное множество альтернатив (ПМА) X^0 . ПМА X^0 представляет собой максимальную систему векторно-несравнимых ПО из \widetilde{X} , $X^0 \subseteq \widetilde{X}$.

Наиболее целесообразное решение выбирается из ПМА с помощью процедур теории выбора и принятия решений [4].

Литература

- 1. Беспалько В.П. Педагогика и прогрессивные технологии обучения. 1995. М.: Педагогика. 98 с.
- 2. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. 1990. М.: Наука. 384 с.
- 3. Емеличев В.А., Перепелица В.А.//Дискретная математика. 1994. Т. 6. вып.1. С. 3.
- 4. Ларичев О.И. Наука и искусство принятия решения. 1979. М.: Наука. 200 с.

Mathematical model of organization of personal-guided train-ing pupil on hypergraphs

Omel'chenko G.G., Salpagarov S.I.

The paper is dedicated to multi-criteria mathematical model of personally orientated organization of students' education. The extreme model has been built in language of the hypergraph theory.