A Reconfigurable Architecture for Multi-Context Application

Manoel E. de Lima1, Remy E. Sant’Anna2, Abel G. Filho1, Abner Barros1, Paulo Guedes1,

Julio A. Filho1, Raimundo Barreto1 and Claudianne Rabelo1
Abstract (A reconfigurable computer presents the facility of changing functions according to the lacks of the application. Based on reconfigurable devices, this approach can reduce costs, especially in terms of hardware implementation. The developing of platforms with reconfigurable hardware and programmable control devices, can be used in several applications as in a hardware/software codesign approach, for small and large designs. This work describes an implementation of a multi-context system in a reconfigurable environment. The platform description is presented, as well as the reconfiguration method. A biological application has been developed using the proposed platform. Satisfactory results have been reached and are described in this paper.

Key words: Reconfigurable Computing, FPGA, Microcontrollers,Hardware/Software Codesign, Biological Applications.

Introduction

Traditional electronic computing presents two methods for the execution of algorithms. The first uses ASICs (Application Specific Integrated Circuits) to perform the operations in hardware. Once time it is developed for a specific computation, it’s very fast and efficient. However, cannot be modified for another application. This forces a re-design of a new chip, for a new functionality, in an expensive process.
Software approaches present advantages such as flexibility and low cost for implementation of complex functions. However, it presents limitations, such as difficult to explore parallelism and high speed applications. These processes are implemented in devices such as microprocessors and microcontrollers.

On the other hand, reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much higher performance than software, while maintaining a higher level of flexibility than hardware [5],[6],[13]. This work aims the prototyping of a multi context problem in a reconfigurable platform called Chameleon.

This platform allows, into a hw/sw codesign methodology the rapid prototyping of digital systems in a single or multi context approach. Chameleon’s functionality and the way a multi context design is implemented on it are presented. Particularly a biotechnology application focusing biosensors will be described in details as a case study. Such architectures and devices has been developed and applied in several areas such as image processing, digital signal processing, electronic, audio and video applications, biotechnology, and so on. In this paper, a brief description of Chameleon prototyping board architecture is presented in section 2. The proposed methodology and design flow for multicontext prototyping is covered at section 3.

Section 4 describes the platform monitor program. A biological application, for monitoring a piezoelectric biosensor is presented as a case study in section 5 in order to demonstrate the methodology. Final conclusions are presented in section 6.

Architecture Overview

The Chameleon architecture [15] comprises a prototyping board and CAD tools that help the designing and testing of digital systems. The basic prototyping board is composed of a software and a hardware component that share a common memory and a communication channel, as depicted in Figure 1. [image: image1.wmf]*.c *.vhd

 8051

 Foundation

C compiler VHDL Compiler

 Simulator Simulator

 Standard XACT

 Linker

 Executable *.bit

Merger

software hardware

m

controller

 FPGA

*.bit

*.exe

board

Software processes are executed in a low coast off-the-shelf microcontroller, 8051-compatible family[16]. It can run processes using an ad hoc approach or yet using run-time kernels to provide more functionality to the system, e.g. the Tiny Real Time Operating System from Keil Inc [2], [4].
The hardware processes are implemented on a single reconfigurable array element based on a subset of the XC4000 Xilinx Series [1]. This subset can support circuits between 3000 to 13000 equivalent Xilinx gates, depending on the chip part [10].

Two memory banks, composed of a 64 Kbytes program memory and a 64 Kbytes data memory provide storage space to keep the FPGA configuration and microcontroller program as well as variables and any dynamic process information.

[image: image2.png]

1Manoel E. de Lima, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, mel@cin.ufpe.br
2Remy E. Sant’Anna, Universidade de Pernambuco – Escola Politécnica Rua Benfica 455 Madalena, Recife-PE res@cin.ufpe.br
1Abel G. Filho, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, agsf@cin.ufpe.br
1Abner Barros, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, acb@cin.ufpe.br
1Paulo Abadie Guedes, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, pag@cin.ufpe.br
1Julio A. Filho, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, jaof@cin.ufpe.br
1Raimundo Barreto, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, rsb@cin.ufpe.br
1Claudianne Rabelo, Centro de Informática, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil, cmr@cin.ufpe.br
[image: image3.png]

[image: image4.bmp]
The platform memory is split in two parts: one non-volatile that stores a resident boot program (monitor), and another, implemented in a SRAM memory used to temporarily hold user application programs. The resident program initially controls the serial interface, via microcontroller, in order to receive both the FPGA configuration and microcontroller application program from the host PC. An 8-bit data bus and a 16-bit address bus provide data exchanging between the main processor, the FPGA and memory banks. A bi-directional asynchronous control bus is also available to manage the set of common control signals between hardware and software components.

Some of the CAD tools present in the system are commercial and some have been specially created to be used in the Chameleon environment [8], [19]. At the moment the system uses the Foundation Series and XACT (FPGA CAD tools from Xilinx to generate a FPGA configuration file. The hardware components are described in VHDL

The microcontroller program, which is written in C or assembly language, is compiled using Keil Software Inc. compiler. Further details about these subsystems and other features can be seen in the sections to follow.

Proposed Methodology

This section describes the suggested methodology for a multicontext prototyping on Chameleon. The development environment is composed not only by the prototyping board but also by CAD tools, some of which are commercial and some that have been specially created to be used in the Chameleon environment. The design flow of this methodology is depicted in Figure 2.

During prototype synthesis, a partitioning procedure is carried out in order to split the software and hardware process based on a cost function. The hardware/software partitioning cost function must take into account parameters such as speed and area, so that the computation-massive processes are implemented in hardware and the low-speed, control-based processes are left in software, while regarding the FPGA’s area limitation. Currently, the hardware/software partitioning is still performed manually but it will be incorporated to the PISH partitioning methodology [3], [7], [17]. Once the partitioning is performed, hardware and software processes can be separately compiled and simulated.

The hardware component VHDL code is then fed through programs from Foundation and XACT (FPGA CAD tools by Xilinx) to generate a FPGA configuration file proper to the specific Xilinx chip present on the Chameleon board (see Figure 2).

The microcontroller program, which is written in C or assembly language, is compiled using Keil Software Inc. Professional Development Kit (PDK). The resulting object file can be used for simulation and debugging on a PC or cross-debugged using a special board controlled through a PC serial port, still using Keil’s PDK.

After this, the executable(s) file(s) in FPGA and microcontroller from a particular application are merged and stored in cores library in host (PC). An application may contain several configuration files to hardware and software components as shown in Figure 3.

With the use of reconfigurable devices, is possible to provide application cores in a fast way and with the same functionality present on ASICs. These reconfigurable devices, mapping algorithms in execution time, may provide solutions under demand architecture. This approach can be seen as high integration software and hardware model, where hardware cores may be swapped, managed by microcontroller, depending on the application

[image: image5.bmp]
For each new application the software and hardware processes are previously compiled and synthesized respectively. Must be observed that, as showing in figure 4, for each new application, a set of software and hardware cores (bitstreams) are chosen for download on the prototyping board according to the application and its constrains. A main process in the microcontroller manages all software and FPGA configurations required. Depending on the application, special transducers/converters also need to be adapted to the platform in order to generate the right digital data entry to the FPGA.

[image: image6.bmp]
The Monitor program

The microcontroller of the platform controls, via the monitor program, the FPGA configuration, communication process with the host and the storage of the different FPGA configuration and software process in the RAM memory as well. As depicted in Figure 4, each new application can contain several configuration files for hardware and software components. The scheduling for execution of these processes in RAM is managed by the application software trough the microcontroller, according to the sequence of the process in the application. This scheduling is performed for any high level tool or by hand and it is not discussed in this work.

Initially the user chooses the application and each set of process of each new application stored in the host database must be transferred (download) to the prototyping board RAM via a serial communication link. Once the hardware and software cores are in the memory, the monitor transfers the execution pointer for the main routine in software. Thus, the user application is finally executed. Any routine execution in software or any new FPGA configuration is controlled by software components. Any software core can use monitor routines such as serial communication and FPGA configuration. At the end of each application, the control returns to the monitor and a new application can be performed. Figure 5 shows the application execution flow in the board.

The platform RAM is mapped into reserved blocks for each part of the monitor, application software and hardware cores, variables and special interrupt vectors. At this moment only 2Kbytes are reserved for the software cores, what is enough for small applications. Taking into account the FPGA XC4005 chip from Xilinx, the system is able to store up to four distinct hardware configurations (core) for each new application. The monitor and auxiliary routines take only 4Kbytes.

 The memory space addressed by the monitor is depicted in the Figure 6. The vectors area represents a repository of interrupt vectors that can be used by the monitor to control execution of standard interrupt function, such as serial communication, timers, and so on.

Case study

A biological application has been used as case study. A system to determine humoral response against Streptococcus pneumoniae after vaccination has been developed in the platform. The principle of this method is based on the decreasing of the resonance frequency of oscillating quartz crystal in the binding of the mass on coated surface during the measure. In this case, a quartz crystal microbalance (QCM) biosensor, operating in 10MHz of resonance frequency, in a FIA system (Flow Injection Analysis), has been used [9], [18].

An oscillator circuit has been developed for two devices QCM (AT electrodes) with frequencies around 10MHz. Two resonant crystals were used, one as work electrode and another as reference electrode, in way to compensate the current effects of mechanical oscillations and "drifts" of chain. The schematic diagram of the electronic circuit is shown in Figure 7.

Digital Signal Processing Module
 The signal processing for immunodiagnostics by biosensors proposed was developed based on a hardware/software codesign approach, aiming a better hardware/software processes integration and performance. The software component was described in C language, and implemented in a microcontroller Intel 80C32 [11] component. The hardware components were implemented in a Xilinx FPGA XC4010E Series [12], and their codes written in VHDL [14].

Three different codesign approaches were implemented and analyzed in this case study in order to show how the architecture may be flexible and suitable for such kind of application. In the three approaches, the crystals data acquisitions are made through the FPGA. The experiments are described as follows:

a. The FPGA is used in two stages. Initially it collects data from biosensors, and later, in a second stage, after its reconfiguration, calculates the relaxation of the system ;

b. The FPGA is only used to collect data from biosensors, and the microcontroller to calculate the relaxation of the system ;

c. The FPGA is used to collect data from biosensors and to calculate the relaxation of the system in an only stage (without reconfiguration).

Results
In the three approaches, the software component was implemented in C and the hardware ones in VHDL. The procedures take into account that the bitstream size generated by Xilinx synthesis tools for FPGA has the same size for each specific chip family, independent of the VHDL code. The configuration time for the FPGA XC4010E is 61.8 ms.

 In the first approach (item (a)), the FPGA has been used to get and treat the signals from the biosensors, as well as to calculate the variance and the standard deviation. In this case, the microcontroller firstly configures the FPGA to get and treat the signals. After that, in a second stage, the microcontroller reconfigures the FPGA and send the data to it to deviation standard calculation. Each new configuration takes approximately 61.8 ms. The three codes size, one for software and two for hardware, are shown in table 1. As the two FPGAs processes are independent, and in order to analyses the reconfiguration, the two processes (Main and Relaxation) were considered as two distinct bitstreams.

 In the second approach, item (b), the FPGA was used only to get the data from the biosensors, and the microcontroller to calculate the relaxation of the system (deviation standard). This process takes approximately 7.65 ms. The codes for this second approach can be seen in Table 2.

Table 2 - Microcontroller relaxation time
In a third approach, item(c), taking the FPGA to read the data and calculate the relaxation of the system in one unique step, the process takes only 6.07 (s, and the codes size are similar to those presented in table 2.
The system relation time for the three approaches can be seen in Table 3.

	Approaches
	Time

	3 codes (Comunic. (microc)+

 Dif(FPGA) +

 Relax (FPGA(coprocess)))
	

	2 codes (Com., Relax(microc) +

 Dif. (FPGA))
	

	2 codes (Com. (microc) +

 Dif. Relax (FPGA)
	

 Table 3 - Relationship among the three approaches
 The results of the experiment on humoral response against Streptococcus pneumoniae after vaccination, based on a quartz crystal microbalance approach, are the same as previously reached in laboratory [9].

Based on the experiments we can observe that, in some cases, the FPGA reconfiguration becomes a bottleneck. In this case study, for instance, the use in two stages for the FPGA was not a suitable time solution, since the time spent for reprogramming was bigger than the time required for the calculation in the microcontroller. However, the time taken for calculation in microcontroller is worst than the time required for the calculation in the FPGA with no reconfiguration step. Thus, for this particular application, the deviation standard should be calculated in the FPGA in a only stage. On the other hand, the use of FPGA is needed anyway, because of the high-speed interface to get and treat the biosensor signals.

The hardware/software architecture presented is generic for a large number of biosensor implementation issues and other applications. Certainly, more complex biosensor data calculation can take the advantages of the FPGA reconfiguration strategy suggested in this works.

Conclusions

A reconfigurable architecture for multi context application has been suggested. The methodology takes into account a reconfigurable approach based on low cost devices. A microcontroller/FPGA platform based on Chameleon prototyping platform has been implemented to validate the architecture. A case study has been presented and the results were satisfactory. The platform shows to able to implement small designs in a hardware/software codesign approach for applications that require fast I/O interface and processing, well as slow process and link communication. Theses aspects give to the platform good characteristics for prototyping of education and simple industrial application designs.

References

[1] Xilinx, "The Programable Logic Data Book", Xilinx inc., 1996.
[2] KEIL Software inc. professional development kit manuals.

[3] Barros, E. et al., "Hardware/Software Codesign in the PISH project", procedings of the II

Brazilian Workshop on Hardware/Software Codesign.

[4] Keil web site: http://www.keil.com

[5] Hauck, S. – “The future of reconfigurable systems”, Keynote Address,5th Canadian conference on field programmable devices, Montreal

[6] Hauck, S. – “The holes of FPGAs in reprogramable systems”, preceedings of IEEE, vol. 86, No

4, pp 615-638.

[7] Maciel P. R., E. Barros, M. de Lima, D. S. da Silva, "Resource Sharing Estimation by Petri Nets in PISH Codesign System", HPC 2000 Special Track on Petri Nets and Performance Evaluation in HPC2000 , WT.

[8] Barros, Edna N.; Lima, M. E.; Araújo, C. C.; Silva, D. S.; Maciel, P. R. M., “Co-Sysnthesis and Prototyping Supporting the Design of Reconfigurable System”, pp. 54-67, 2000.
[9] Dutra, Rosa A. F., “Desenvolvimento de Biossensores em Bioquímica Clínica e Imunodiagnóstico” – PhD Thesis– Centro de Ciências Biológicas – UFPE - 1999.
[10] Xilinx, "Count Capacity Metrics for FPGAs",XAPP059, V1.1.

[11] Schultz, Thomas W.; “ C and the 8051 – Hardware, Modular Programming and Multitasking” Second Edition –Vol 1 - 1998.

[12] Xilinx web site: http://www/xilinx.com

[13] “Eldredge, J., Hutchings, B., “Run-Time Reconfiguration: A Method for Enhancing the Functional Density of SRAM-Based FPGAs", in Journal of VLSI Signal Processing, Volume 12, 1996. Pages 67-86

[14] Pellerim, D. , Taylor, D. - “VHDL Made easy” First Edition, - 1998

[15] De Lima, M. E., D. S. Silva, D. G. Ramalho, A. V. Burgos, “Chameleon-I: A Rapid Prorotyping Multi-FPGA Platform for PISH Codesign System”, SBMicro2000 - XV International Conference on Microelectronics and Packaging”, pp. 86-91.
[16] The 8051 web page tutorial at http://www.8052.com.

[17] Lima, M. E; Barros, E.; Maciel P. M.; Silva, D. S., Rosenstiel, W., “Resource Sharing Estimation by Petri Nets in PISH Co-design System”, HPC’2000, pp.371-376.

[18] Dutra, R.F.; Castro, C. M. H. B.; Azevedo C. R.; Vinhas, E.; Malagueño, E.; Melo, E. H. M.; Lima Filho, J. L.; Kennedy, J. F., “Immobilization of pneumococcal polysaccharide vaccine on silicon oxide wafer for an acoustical biosensor, Biosensors and Bioelectronics”, Volume 15, Issues 9-10, November 2000, Pages 511-514 .
[19] Lima, M. E; Barros, E.; Maciel P. M.; Silva, D. S., Rosenstiel, W., “Resource Sharing Estimation by Petri Nets in PISH Co -design System”, HPC’2000, pp.371-376, 2000.
6.07us+61.8ms

 3 x 61.8ms

hw

sw

 software and hardware cores

Application A, B and C

 7.65ms+61.8ms

Description�
Main

XC4010E�
(C�
�
Code size�
22.5kbytes�
2.5 kbyte�
�
Number of Lines �
220�
420�
�
CLB�
23(5%)�
-�
�
IOBs�
14(22%)�
-�
�

Description�
FPGA�
(C

Program�
�
�
Main�
Relaxation�
�
�
 Code size�
22.5kbytes�
22.5kbytes�
1.0 kbyte�
�
Number of lines �
220�
250�
350�
�
Number of CLBs �
23(5%)�
279(69%)�
-�
�
Number of IOBs�
14(22%)�
14(22%)�
-�
�

C

Configure FPGA

Not

End File?

Download

Core

FigURE 6 – Memory ORGANIZATION

FigURE 5 – Monitor Program stages

FIGURE 2 – Design Flow

EPROM

Yes

Configure FPGA

Configure FPGA

Not

End File?

sw

hw

hw

hw

sw

bitstream

Codesing Architecture

Selector

Core

FPGA

sw

Reconfigurable

Hardware

C



hw

hw

hw

PC Database

bitstream

Codesing Architecture

Selector

Core

FPGA

Core library

Download

Core

Application

Returns to monitor

code

user

Execute

Ram

Switch

Not

Yes

File?

Another

Software and hardware cores

sw

End

Monitor transfer control to the application

code

user

Execute

Ram

Switch

Not

Yes

File?

Another

Yes

2kbytes

2kbytes

2kbytes

2kbytes

56kbytes

(Hardware Cores)

Monitor variables

. . .

Core N

Core 2

Core 1

 monitor mirror

User program

(Sofware Cores)

(8)

Chameleon Platform

Oscillator Circuit Board

Circuit Power Board

Reset System

Power On/Off

Serial Communication

Crystal Resonant Reference

Crystal Resonant Work

FIA System

FIGURE 7 - Case study architecture

(9)

Oscillator

 (2)

(6)

 (1)

ChameleonI

FPGA

(7)

(5)

(4)

(3)

AC

 /

DC

Vectors

�

Reconfigurable

 RAM

Hardware

C

 A/D



FIGURE 3 – Configuration Files

PC (Database)

Serial

biosensors

FPGA

Display

RAM



Serial

Address

Table 1 - Code size

C

 Temperature

 Acoustic Biosensor

B

Signal Process

Image Process

 Biosensors

Data

D/A

Osc

FigURE 1 – Chameleon Architecture

A

 FIGURE 4 - Pattern configuration (cores)

PAGE
© 2003 ICECE

 March 16 – 19, 2003, São Paulo, BRAZIL

1
3rd International Conference on Engineering and Computer Education

