
USING PAIR PROGRAMMING TECHNIQUES IN CLASSROOM
ENVIRONMENT

Carlos Alberto Ynoguti1, Afonso Celso Soares 2

1 Carlos Alberto Ynoguti, INATEL – National Institute of Telecommunications, Av. João de Camargo, 510, 37540-000, Santa Rita do Sapucaí, MG, Brazil,
ynoguti@inatel.br
2 Afonso Celso Soares, INATEL – National Institute of Telecommunications, Av. João de Camargo, 510, 37540-000, Santa Rita do Sapucaí, MG, Brazil,
acsoares@inatel.br .

Abstract For several years, software development
companies have been using pair programming with great
success. Pair programming is a technique that consists of
two programmers working together on the same computer to
develop a computer program: one of them, the driver,
operates the computer, and the other, the observer, examines
the work of the driver, looking for errors and thinking of
possible alternatives that can improve the solution. This
procedure is closely related to Collaborative Learning
philosophy, extensively used in elementary and high school
teaching, with very good results. Unfortunately, its use in
undergraduate courses, especially in the engineering area,
is almost absent. Therefore, we decided to adopt pair
programming in a first semester computer-programming
course, both in theoretical classes and in laboratory
practical classes. This paper reports the results of a one-
semester course using pair programming.

Index Terms pair programming, collaborative learning,
computer science learning, extreme programming.

INTRODUCTION

Traditionally, students find introductory computer science
courses very frustrating (in our institution, about 30% of
them fail the subjects at each semester).

With pair programming learning, two students work
simultaneously to solve a task (an algorithm or a computer
program). In this technique, one of the students is the
“driver” and has control on the pencil/mouse/keyboard and
writes the algorithm or the program. The other, called the
“observer”, continuously and actively examines the work of
the driver, watching for defects, thinking of alternatives,
looking up resources, and considering strategic implications
of the work at hand. Examples of things noted by the
observer are erroneous syntax, misspelling, and smaller logic
mistakes, among others.

The student pairs apply a positive form of “pair-
pressure” on each other, which has proven beneficial to the
quality of their work products. At the end of the semester,
the students were given a questionnaire about the pair-
programming experience and most of them reported good
impressions about this technique.

Also, this technique has proven to be beneficial for the
teachers too. Some minor questions are answered inside the

pairs. The number of exercises to correct is divided by a
factor of two, enabling the teacher to give more exercises,
and consequently, making a better evaluation of what issue
is or is not being absorbed by the students. One important
thing to note is that the number of cheating cases is reduced
because collaboration is legitimized.

Cognitive theory can help explain why pair
programming might be more effective than solo
programming. In 1991 Nick Flor, a master’s student of
Cognitive Science at U.C. San Diego, reported on distributed
cognition in a collaborative programming pair he studied.
Flor recorded via video and audiotape the exchanges of two
experienced programmers working together on a software
maintenance task. In [3], he correlated specific verbal and
non-verbal behaviors of the two programmers to known
distributed cognition theories. One of these theories is
“Searching Through Larger Spaces of Alternatives”:

“A system with multiple actors possesses greater
potential for the generation of more diverse plans for at least
three reasons: (1) the actors bring different prior experiences
to the task; (2) they may have different access to task
relevant information; (3) they stand in different relationships
to the problem by virtue of their functional roles. . . An
important consequence of the attempt to share goals and
plans is that when they are in conflict, the programmers must
overtly negotiate a shared course of action. In doing so, they
explore a larger number of alternatives than a single
programmer alone might do. This reduces the chances of
selecting a bad plan.”

In this article, an experience involving pair
programming learning technique in a first semester
undergraduate computation course is presented. Advantages
and disadvantages of this method are also presented and
discussed.

Pair programming learning strategy is based on
collaborative learning theory, which has been widely
researched and advocated throughout the professional
literature, mainly at the primary and secondary levels. For
higher level courses, it’s been adopted recently in some
institutions with good results. This theory is further
discussed in the next section.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

1

COLLABORATIVE LEARNING

The term "collaborative learning" refers to an instruction
method in which students at various performance levels
work together in small groups toward a common goal. The
students are responsible for one another's learning as well as
for their own. Thus, the success of one student helps other
students to be successful [5].

The collaborative learning points out the active
participation and interaction, either between the students and
the teacher or among the students.

Basic elements of collaborative learning

The basic elements of the collaborative learning method can
be summarized into the following items[6]:
1. Group interdependency: the students, as a group, have a

common goal and should work as an efficient team to
reach it. The students are responsible for their own
apprenticeship. This procedure helps in the
apprenticeship of every member of the group.

2. Interaction: one of the goals of the collaborative
learning is to develop the student’s competence in
working in groups. Each member of the group should
accomplish his part of the task and spare some time to
share his knowledge with his partner(s) and, on the
other hand, receive the contributions of his partner(s).

3. Diverging thoughts: there shouldn’t be a member that
claims himself as the leader or the smart guy, but
instead, a conscience that both of the members of the
group can explain their own points of view, competence
and perspectives. The activities should be created in
order to demand collaboration instead of competition
(complex tasks that require creativity and has several
possible solutions).

Vygotsky’s socio-cultural theory

The socio-cultural theory by Vigotsky about the learning
process emphasizes that the human intelligence comes from
our society and culture, and happens at first time because of
the interaction with the social environment.

Another aspect of Vygotsky’s theory is the idea that the
potential for cognitive development is limited to a
determined zone that he called “proximal development
zone” (PDZ). He defines this concept as “the distance
between the real development level, determined by the
independent problem resolution, and the potential
development level, determined by the problem resolution
under a supervisor advising or in collaboration with more
capable partners” [1].

It’s important to consider that the PDZ varies with the
culture, the society and the experience of each individual.

For a PDZ to be created, there should exist a joint
activity that enables the interaction between teacher and
students. The group work allows the confront and integration
of different points of view, making the learning process
richer and more interesting.

Of course, people learn by themselves naturally
provided that there exist adequate and minimally stimulant
contexts. However, if a teacher helps a student to analyze
and reflect about his/her actions, the learning process is
accelerated.

EXPERIMENTS

Class characterization

Before describing the pair programming tests results, it’s
instructive to characterize the classes they were performed.
The studies were carried out in an undergraduate, first
semester computing class. In our institution, classes have
typically 70-100 students. The course is divided into two
parts: a theoretical part (60 hours) and a practical one (30
hours).

In the theoretical part, the students learn how to
construct algorithms to solve simple problems, and use a
pseudo-code language to construct these algorithms. All the
algorithms are written with pencil and paper and the students
are continuously invited to debug their algorithms simulating
the behavior of the compilers.

Now, in the practical part, the students are divided into
smaller groups (20 to 25 students) and use the Delphi
compiler to create their programs.

Grades are distributed in the following manner: 2
theoretical tests and 3 practical tests, taken individually.
Also, during the semester, 10 to 15 exercises are assigned
and corrected, and add a bonus up to 10 points in the final
grade (grades range from 0 to 100 points). Part of these
exercises was done individually, and part with a partner,
using the pair-programming technique.

In other words, the pair-programming technique was
used as a learning method, not as an evaluating one,
although part of the grading had been obtained using this
technique.

Solo and pair programming tests

As reported earlier in this article, the pair programming
technique was used in the classroom and laboratory
exercises. In the first part of the semester, the students
developed their activities working alone. Because of the
class size (74 students) and the class dynamics (teacher was
always solving students’ doubts during the exercises),
cheating was difficult to control, and it was common to see
4, 5 or even 6 exercises with identical (and wrong) solutions.
It was clear from these results that only a few students did
the exercises. The others just cheated. It was a frustrating
result, because it’s clear from these facts that students were
more interested in the bonus points than in learning how to
program.

To try to change this behavior, the students were told
that if the teacher found more than two exercises with
identical solutions, the grade would be divided by the

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

2

number of identical exercises. After this, the number of
cheating cases dropped, and so did the grades.

Of course, as a result of this scenario, the students’
grades in the first tests were not good.

In the second part of the semester, they were given an
article about pair-programming [2] to read and had a brief
explanation about the new working method. After this, they
were invited to test on the new working methodology. None
of them was obligated to work in pairs, but the teacher
encouraged them to try the method before deciding how they
would like to work. These activities were done both in
classroom, with algorithm design problems, and in the
laboratory environment, with code design problems.

Pairs were formed in a free way. No constraints were
made in this sense and, in general, the students chose their
friends or the students that was seated nearby, and later, it
was noticed that this procedure was an error, as shown in the
next section.

At the end of the semester, the students were invited to
answer some questions concerning the pair programming
experience. The questions were extracted from a work by
Williams & Kessler [2] with some minor modifications. The
answers the students gave will be commented later in this
article.

Results

Cheating cases dropped dramatically, and the number of
different solutions raised enormously. Also, the solutions
varied from very sophisticated ones to very complicated and
inefficient ones, but the great majority of the designs met the
specifications of the problems, a result quite different from
the first part of the semester.

The classes became very noisy, but this was because the
students were really discussing solutions and alternatives to
solve the problems and actively participating in the class.
Also, when students asked the teacher to clear doubts, they
came with more elaborated questions, not trivial ones, so the
easy answering doubts were cleared independently by the
students.

Specifically in the algorithms made in class, syntax
errors are very common because of the lack of a compiler
that reports them to the programmer. With pair programming
this kind of error dropped dramatically.

Now in the laboratory environment, it was noted that
the students waste less time doing other activities (such as
talking, surfing on the internet, etc.) because of the partner’s
pressure. Also, they learn not only the theoretical aspects of
programming, but also get some tips from their classmates:
hot keys, typing tricks, help usage and other things were
learned just by observing the partner working.

A final feature of this method is that, as students work
in pairs the task of correcting the exercises is approximately
divided by a factor of two, and then it can be possible to give
more exercises during the semester and keep a closer look
on how the students are assimilating each part of the subject
and reinforce the weak areas.

Questionnaire analysis

The questions taken from [2], and the most common
answers, were:
1) It has been said among teachers, “You do not know it

unless you can teach it.” Do you find any value to
yourself in explaining your work to your partner?
Many students reported that when explaining some

subject to his/her partner, they had to elaborate it in a more
detailed fashion, so they learned a little bit more and noticed
several aspects of the subject during this process.

2) Do you feel you have learned anything just by reading

your partner’s code?

The great majority of the students answered “no” to this
question. They reported that they learned almost nothing by
observing their partners working.

3) What was the biggest hurdle you have had to overcome

as a collaborative programmer?

Accepting another strategy, different from what they

had traced in the principle, was the most common problem
reported.

4) What kinds of things does the non-driver do as he/she

observes?

Some syntax errors, erroneous indentation, and minor

logic mistakes were the most frequently answers found.

5) What do you think is the biggest advantage of
collaborative programming?

Most of the students reported that the big advantage of

pair-programming is that they could perform better
algorithms, with fewer errors and in less time.

One of the students reported an interesting fact: during
one development section, he didn’t know how to solve the
first part of the problem, and his partner helped him. In the
second part, the opposite happened, he found the answer that
his partner couldn’t. So, working separately, both of them
would fail the exercise, but working together, they could
accomplish their goal.

6) What do you think is the biggest problem with

collaborative programming?

The main problem the students found in pair-

programming practice was when their partners didn’t accept
different ideas or suggestions. Some of the students also
reported that their partner simply did nothing, not
cooperating for the solution of the problem.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

3

Drawbacks

As any other learning methodology, pair-programming has
its drawbacks too. Analyzing the questionnaire answers and
based on our own observations, we can list the following
drawbacks in using pair-programming methodology in a
classroom environment:

Some students really dislike working in pairs, and prefer
to work alone. Some of them not even tried to work in pairs,
preferring to work alone, even scoring only poor grades.

Pair choosing is another aspect that must be addressed
carefully. They must be formed with one student that has a
higher knowledge/skill level than the other, so he/she can
help his/her partner. Pairs with two low knowledge/skill
level students didn’t worked also, because none of them
could help each other. A student with very low
knowledge/skill level together with a very high
knowledge/skill level is another kind of pair that doesn’t
work, because the “expert” student quickly becomes bored
with his partner and resolves the problem alone, without
explaining the solution to his/her partner.

Another thing that must be taken into account for the
pair programming to work properly is the personality of the
partners. In our classes, we observed that students with a
dominant profile tend to not accept suggestions and critics
and try to resolve things by themselves. On the other hand,
passive students tend to accept their partners solutions and
avoid giving opinions, even when they notice something that
is clearly wrong.

The last thing we observed in our classes is that there
are some students that became addicted to pair programming
and could not develop solo programming anymore. Probably
this is the case of a passive student that agrees with
everything even not understanding what the partner is doing.

CONCLUSIONS AND FUTURE WORK

In this article we described the pair-programming method
when used as a learning tool and showed the relationship
between this method and the collaborative learning theory
and the Vygotsky’s socio-cultural theory.

In general good results were achieved, and most of the
students were satisfied with their own performance in the
course. We noticed problems in some pairs due to great
difference in knowledge, when one of the partners was too
dominant or too passive, and when partners had personal
differences.

Also, some students could not maintain the performance
of pair programming when working alone. This fact may
indicate that not all the problems would be solved in pairs;
students have to have some problems to solve alone to
identify their strong and weak points, and have a more
realistic view of themselves.

In our institution, a psychological profile evaluation is
made for all the students by a specialist, and for the next
semester, this information will be used to try to avoid
problems with dominant/passive partners in the working
pairs. Also, the knowledge/skill levels should be used to
form the pairs, and the first test of the semester can be used
for this purpose.

REFERENCES
[1] VYGOTSKY, L. S. “A formação social da mente”, Martins Fontes,

São Paulo, 1994.

[2] Williams, Laurie A. & Kessler, Robert R. “Experimenting with
industry’s Pair Programming model in the computer science
classroom”, Journal on Computer Science Education, March 2001.

[3] Flor, N. V., & Hutchins, E. L. “Analyzing Distributed Cognition in
Software Teams: A Case Study of Team Programming During
Perfective Software Maintenance”. Paper presented at the Empirical
Studies of Programmers: Fourth Workshop, 1991.

[4] Williams, Laurie and Kessler, Robert R. “The Effects of Pair-
Pressure and Pair-Learning on Software Engineering Education.”
Conference of Software Engineering Education and Training, 2000.

[5] Gokhale, Anuradha A. “Collaborative Learning Enhances Critical
Thinking”, Journal of Technology Education. Volume 7, Number 1
Fall 1995.(http://scholar.lib.vt.edu/ejournals/JTE/jte-v7n1/gokhale.jte-
v7n1.html, (11/22/2002))

[6] http://www.minerva.uevora.pt/cscl.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

4

http://scholar.lib.vt.edu/ejournals/JTE/jte-v7n1/gokhale.jte-v7n1.html
http://scholar.lib.vt.edu/ejournals/JTE/jte-v7n1/gokhale.jte-v7n1.html

